R20

Code No: R20A1206

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

III B.Tech II Semester Supplementary Examinations, April 2025

Data Warehousing and Data Mining

(IT, CSE-AIML & B.Tech-AIDS)

|--|

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

		<u>SECTION-I</u>	BCLL	CO(s)	Marks
1	А	Explain 3-tier Architecture of Data warehousing?	L1	CO-I	[7M]
	В	Define Data Warehouse? Differentiate between OLAP and OLTP?	L2	CO-I	[7M]
		OR			
2	А	What is a Data Cube in a multidimensional data model? Explain briefly about Data Cube with a suitable example?		CO-I	[7M]
	В	Discuss typical OLAP operations with suitable examples?	L1	CO-I	[7M]
3	А	Explain various issues related to data cleaning.		CO-II	[7M]
	В	Explain the data preprocessing techniques in detail		CO-II	[7M]
		OR			
4	А	Explain various Data Mining Functionalities		CO-II	[7M]
	В	Illustrate briefly about any 4 Data mining tasks Primitives with suitable examples?		CO-II	[7M]
		SECTION-III			
5	А	Explain the terms	L2	CO-III	[7M]
		i) support ii) confidence iii) association rule iv) apriori principle			
	В	Find all frequent itemsets using Apriori Algorithm with min support of 40% for the below transaction database	L5	CO-III	[7M]
		TID items			
		100 B,C,E,J			
		200 B,C,J			
		300 B,M,Y			
		400 B,J,M			
		500 C,J,M			
		OR			
6	А	Explain the methods for compact representation of frequent itemsets with relevant	L2	CO-III	[7M]
		examples (closed frequent itemsets, maximal frequent itemsets)			

B Generate frequent itemsets for the following data using FP- L5 CO-III [7M] Growth algorithm with min support=50% Transaction List of items

<i>T1</i>	<i>I1,I2,I3</i>
<i>T2</i>	<i>I2,I3,I4</i>
<i>T3</i>	<i>I4,I5</i>
<i>T4</i>	<i>I1,I2,I4</i>
<i>T5</i>	<i>I1,I2,I3,I5</i>
<i>T6</i>	<i>I1,I2,I3,I4</i>

SECTION-IV

7	А	Explain the working of a Decision Tree with an example	L2	CO-IV	[7M]
	В	Discuss the working of Naïve Bayes Classifier in finding the conditional probability	L3	CO-IV	[7M]
		OR			
8	А	Discuss General Approaches to solving a classification problem	L3	CO-IV	[7M]
	В	Explain K-Nearest Neighbor Classification-Algorithm and Characteristics.	L2	CO-IV	[7M]
		<u>SECTION-V</u>			
9	А	Explain about various hierarchical clustering methods.	L2	CO-V	[7M]
	В	Explain about K-Means clustering.	L2	CO-V	[7M]
		OR			
10	А	Define clustering? Explain about types of data in cluster analysis	L1	CO-V	[7M]
	В	Describe key issues, strength and weakness in hierarchal	L2	CO-V	[7M]
		clustering.			
